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Abstract

The problem of the dynamic response of a fully saturated poroelastic soil stratum on bedrock subjected to a moving
load is studied by using the theory of Mei and Foda under conditions of plane strain. The applied load is considered to
be the sum of a large number of harmonics with varying frequency in the form of a Fourier expansion. The method of
solution considers the total field to be approximated by the superposition of an elastodynamic problem with modified
elastic constants and mass density for the whole domain and a diffusion problem for the pore fluid pressure confined to
a boundary layer near the free surface of the medium. Both problems are solved analytically in the frequency domain.
The effects of the shear modulus, permeability and porosity of the soil medium and the velocity of the moving load on
the dynamic response of the soil layer are numerically evaluated and compared with those obtained by the exact
solution of the problem. It is concluded that for fine poroelastic materials, the accuracy of the present method against
the exact one is excellent.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of the dynamic behavior of a half-space soil medium under the action of moving loads on its
free surface is of significant importance in the area of geotechnical/structural transportation facilities and
has thus received a great attention over the past decades. Depending on the degree of modeling elaboration
of the soil medium used in the analysis, one can distinguish three categories among the existing published
methods for determining the dynamic response of the ground surface due to moving loads. In the first
category the soil is modeled as a system of Winkler springs, while in the second category the soil is modeled
as a linear elastic or viscoelastic, homogeneous or layered half-space. Finally, in the third category, the soil
medium can be inelastic, poroelastic or gradient elastic. A comprehensive review of the relevant works in
each category can be found in Theodorakopoulos (2003).
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So far, the most comprehensive analytical/numerical works on the dynamic response of a poroelastic
half-space to moving loads under conditions of plain strain are those presented by Siddharthan et al.
(1993), based on the assumption of no relative motion between solid and fluid constituents and by
Theodorakopoulos (2003), accounting for the full generality of Biot’s (1956) governing field equations. In
the latter contribution, the exact vertical soil displacements and stresses as well as the pore water pressure of
a poroelastic soil layer on rigid bedrock subjected to a strip load moving at constant velocity were explicitly
expressed and numerically evaluated for various values of shear modulus, compressibility of fluid, porosity,
permeability and load speed. Thus, a detailed assessment of the relative importance of those parameters on
the response was accomplished.

However, the exact analytical solution of the above problem was rather complicated. In an effort to
obtain an approximate analytical solution of the same problem, characterized by simplicity and satisfactory
accuracy, the method of Mei and Foda (1981) was employed in this paper. Among the applications of Mei
and Foda’s (1981) theory in soil dynamics, one can mention the works of Mei and Foda (1981), Foda and
Mei (1983), Mei et al. (1984) and more recently of Theodorakopoulos et al. (2001) in conjunction with
analytical techniques and those of Kattis et al. (1998, 1999, 2003) in conjunction with boundary elements.

According to the arguments of Mei and Foda (1981) in regions not too close to a free surface, the fluid and
solid matrix move as a whole due to the large frictional resistance forces in the pores of the medium. However,
relative fluid-motion is appreciable within a thin boundary layer near the free surface because of the easiness
with which the fluid can squeeze in or out of the free surface. Thus, a given poroelastic problem involving a
free surface can be approximately solved by first solving an elastodynamic outer problem with modified elastic
constants and mass density for the whole domain and then making a simple correction near the free surface.

Thus, in this work the problem of determining the dynamic response of a uniform, fully saturated
poroelastic soil layer on rigid bedrock subjected to a moving strip load is solved under conditions of plane
strain by the aforementioned approximate method of Mei and Foda (1981). The distributed load, which
moves at constant velocity, is expanded in Fourier series as in Siddharthan et al. (1993) and Theodorak-
opoulos (2003). The outer approximation, i.e., the modified elastodynamic solution for the whole domain,
as well as the boundary layer correction resulting in the solution of a diffusion problem for the pore fluid
pressure, are both obtained analytically/numerically. The results are compared against those of the exact
method in Theodorakopoulos (2003) in order to establish the range of the various parameters of the
problem for which the accuracy of this approximate method is satisfactory.

2. System considered and moving load representation

The soil system examined and the applied moving load are shown in Fig. 1. The system consists of a
uniform poroelastic soil layer, fully saturated by a viscous fluid, under conditions of plane strain. The fluid
is free to squeeze in and out of the entire upper soil surface. The soil layer has a height A and is fully bonded
on a rigid and impervious bedrock.

For the sake of comparison, the applied load condition and configuration are the same as in Siddharthan
et al. (1993) and Theodorakopoulos (2003). More specifically, the surface vertical strip load moves at a
constant velocity ¢, has a width 2/ = 4.0 m, a constant intensity F(x) = F = 400.000 N/m* and is con-
sidered to be periodic with wave length 2L = 409.6 m (Fig. 1). This applied load is assumed to be expanded
in a Fourier series of the form

o0
F(x —ct) = Re Z F, et for t >0

N n=-—00 (1)
F(x) =Re Y F,&"* fort=0

n=—00
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Fig. 1. Geometry of traveling surface load and plane of observation.

where Re denotes the real part and the harmonics F, and the parameter 4, vary with n. The entire loading
function, including the “quiet zone” needed for the attenuation of the response due to a passing load before
the beginning of the next cycle, is sampled at 2N + 1 equally spaced points (Ax = 0.1), numbered from zero
to 2N = 4096. Thus, in accordance with Theodorakopoulos (2003), the discretized loading function of
Eq. (1) may be expressed as a linear combination of N 4+ 1 = 2049 harmonics of the form

2048

F(x —ct) = Re ZF,, gitnl=et) 2
=0
where
F”:{gi sin (nnt)F tt:gZig ®)
and
An = n% 4)

Eq. (4) indicates that 4, varies from zero for n = 0, to 10nr = 31.41 for n = 2048. It should be mentioned
here that the limitation on the number of harmonics in the Fourier expansion of the applied load from
infinity in Eq. (1) to 4096 in Egs. (2) and (3) does not affect the accuracy of the response of the system, since
the response contributions associated with high values of 4, are small (Siddharthan et al., 1993; Theodo-
rakopoulos, 2003).

3. Governing equations of motion of the soil system

Assuming plane strain conditions and referring to the rectangular system of co-ordinates x, z shown in
Fig. 1, the linearized dynamic equations of motion of a fully saturated poroelastic medium due to Biot
(1956) in the notation of Mei and Foda (1981), under the assumption of an incompressible solid constituent
and neglecting the inertia mass coupling terms, are given as
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where Egs. (5) and (6) describe the motion of the solid as affected by the motion of the fluid and Egs. (7)
and (8) describe Darcy’s law of the fluid flow as affected by the motion of the solid. It should be noted that
in the original formulation, Biot (1956) also included apparent inertia terms to describe the dynamic
interaction between the two constituents. However, the apparent mass density, difficult to assess theoret-
ically or experimentally, is often omitted by most researchers as explained in detail by Mei and Foda (1981).
In the above Egs. (5)—(9), t, and 7, are the normal effective stresses of the solid along the x and z co-
ordinates, respectively, 7, is the effective shearing stress of the solid in the x—z plane, p is the fluid pressure, u
and w are the solid displacement components along the x and z directions, respectively, relative to the
bedrock, u" and w' are the corresponding displacement components of the fluid and dots indicate differ-
entiation with respect to time ¢. Furthermore, f is the porosity, p, and p; are the actual mass densities of the
solid and the fluid, respectively, £ denotes the coefficient of permeability, and f is the bulk modulus of the
fully saturating fluid. In general, all functions of the system depend on x, z and ¢.

For the two-dimensional, plane strain conditions examined herein and with the assumption that Hooke’s
law with hysteretic damping relates stresses and strains of the solid skeleton one has

Qu Sw

Su  Sw
=G —4+— 11
fz ( Sz + Sx ) (1)
Sw Su
— 9% *\ ;»*—
7, = (A" +2G") % + o (12)
in which G* and A" are the complex-valued Lamé elastic constants given by
G =G(1+19), 1=v-1 (13)
1% 2V *
A= 2vG (14)

with v being the Poisson’s ratio, G the constant shear modulus and ¢ the constant material damping factor.
Adding Egs. (5) and (7) and Egs. (6) and (8), respectively, and using Egs. (10)-(12) in the resulting
expressions one has
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Thus, the system of Egs. (5)—(12) can be replaced by the equivalent one of the five Egs. (7)—(9), (15) and (16)
with five unknowns u, ', w, w" and p. The method of solution of the problem considered herein is based on
the theory of Mei and Foda (1981), according to which the total field of a poroelastic problem obeying
Biot’s (1956) theory can be approximated by the superposition of (i) an elastodynamic problem with
modified elastic constants and mass density for the whole domain (the outer approximation) and (ii) a
diffusion problem for the pore fluid pressure confined to a thin boundary layer at the free boundaries of the
domain (the boundary layer correction). This implies that any total response function ¢ = ¢(x,z, ¢) of the
system has the form

(b(xvzvt) = ¢0(x’27 t)—|—q§b(x,z,t) (17)

where the outer approximation and the boundary layer correction functions are distinguished by the
superscripts o and b, respectively.

Provided that the applied load is given by Eq. (1) and since the layer properties are independent of the
spatial coordinates, any response functions ¢°(x,z,1), ¢°(x,z,¢) and ¢(x,z,¢) of the linear system may be
expressed as a linear combination of corresponding harmonic functions in the form

¢°(x,z,t) = Re Z P°(z) enl=et) (18a)

¢°(x,z,1) =Re Y db(z)e (18b)

$(x,z,0) =Re Y | ®,(z) e (18c)
with

D,(z) = B} (2) + P)(2) (19)

in which, for example, ®?(z) = @ represents the dependence of the outer approximation response ¢°(x, z, t)
on z only, for the nth harmonic.

3.1. The outer approximation problem

On the assumption that the dimensionless quantity R

_ fncH 2

R
Gk

> 1 (20)

Mei and Foda (1981) argued that the outer region moves as a whole like an undrained system. It should be
noted that the quantity 4,c in Eq. (20) represents the parameter of frequency in the domain of Fourier
expansion considered. Thus, one has

w® =W,  u® = (u)° (21)
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On the basis of Eq. (21), one can obtain from Eq. (9), after integration with respect to time, the following
expression for the associated pore fluid pressure

S0 owe
po__j[j<3t+st> -

Consequently, on making use of Egs. (21) and (22) into Egs. (15) and (16) and integrating the resulting
expressions with respect to time, one receives

. 92 0 92 o . i 82 o 82 0 o
6 (g g ) 4G+ B (gt g ) =l = o+ Sl 23)

* 82 ° 92 © * * 92 ° 92 ° e
G (S—;+9—”§> L +G +ﬁ/f)<9—;+9x—lgz> = [(1=/)p,+ [l (24)

It is observed that Egs. (23) and (24) are the same as in classical elastodynamics for a simple phase medium
but with new equivalent elastic constants and mass density given by

G =G (25a)
=1+ BIf (255)
pe = (1= f)ps+ fpr (25¢)

Thus, the outer region problem is essentially reduced to a usual elastodynamic problem with a free surface,
which can be easily solved to determine w® and «°. Then, the pore fluid pressure is determined by Eq. (22),
which simply states that in the undrained outer region the pore pressure is related to the dilatation of the
solid matrix. It should be noted that the part of response due to the outer approximation solution does not
depend on the permeability £ of the poroelastic medium.

3.2. The boundary layer correction

According to the theory of Mei and Foda (1981), within a thin boundary layer near the free surface of
the medium, for any functions one has 9/9z > 9/9x, which implies that 9z° /9x = 0 and the dominant term
is 9?wP/9z? relative to which the inertia terms are negligible. Based on these assumptions, Egs. (6), (8), (9)
and (12) can be written as

Ly - —a-n¥=o 26)

_];((Wf)b _ Wb) _ Ssi;b (27)
g 9P

Sl -+ 52 = L ()

® = (1 + zc;*)gg—vzb (29)

where Eq. (27) is the static form of Darcy’s law. Thus, the system of Egs. (26)—(29) can be solved to
determine wP, (w")°, t> and p® in the boundary layer.
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Adding Egs. (26) and (27) one receives 31°/9z = 9p°/9z, which after integration with respect to z (with
the integration constant equal to zero since both t° and p° vanish beyond the limit of the boundary layer)
yields

v =p (30)
Consequently, after differentiation of Eq. (27) with respect to z, substitution of the resulting expression into
Eq. (28) and use of Egs. (29) and (30), one receives

92p® . f 1
—Z _Dp*=0 thD=%+———— 31
vz P i AT S
which is a heat diffusion equation and can be easily solved. Eq. (31) is the governing equation of the
boundary layer for the pore fluid pressure p®. This boundary layer formulation is only valid if

H/d> 1 (32)

in which d is the boundary layer thickness.

k

4. Solution of the governing equations
4.1. Boundary conditions

The solution of the governing equations for the whole domain (outer region and boundary layer) can be
found by employing the following four boundary conditions:

at the bottom (z=H): w=w’=0, u=u’=0 (33a)

at the surface (z=0): 1.=1=0, .=+ =F (33b)
or in terms of the corresponding harmonics, on account of Egs. (17) and (18), by

at the bottom (z=H): W’ =0, U’ =0 (34a)

at the surface (z=0): T72,=0, T° +7T> =F, (34b)

In addition, the governing equations of the boundary layer can be solved subject to the boundary condi-
tions

at the bottom of the boundary layer (z =d): p*> =0 (35a)

at the surface (z=0): p=p°+p°=0 (35b)
or in terms of the corresponding harmonics

at the bottom of the boundary layer (z=d): P’ =0 (36a)

at the surface (z=0): P°+ P> =0 (36b)

4.2. Solution for the outer approximation

It is noticeable that, in the Mei and Foda’s (1981) theory, the boundary layer does not affect the traction
of the free surface so that the outer approximation may be solved first by the usual methods of elasticity
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theory. Thus, on making use of general expression (18a) and Eq. (25), the system of the governing Egs. (23)
and (24) for the two displacement responses of the soil layer in the outer domain reads

a(W2)" + bWy +di(U7) =0 (37)

ax(Uy)" + b Uy +dr(W) =0 (38)
in which, a prime denotes differentiation with respect to z and the coefficients ay, by, d;, a,, b> and d, are
given by the following expressions

ay =2, +2G"

by = —G"J} + piic

dy = (2, + G")iA,

P (39)

by = —(Ji +2G"))} + peiic?

dy = d,
Assuming solutions for the two displacements of the form

We =A4e¥, U =Be” (40)
the general solution of the system of Eqs. (37) and (38) is of the form

W = A1, €17 + Ay, €% + A3, €77 + Ay, €% (41)

U, = By, €"" + By, e"* + B3, e? + By, ™" (42)
where

B = radi, T = g th (43)

diqx

and g, (x = 1-4) are the roots of the fourth-degree characteristic equation of the system of Eqs. (37) and
(38) given by
24+b d
d t arq + by 19 =0 44
¢ drq aq* + b, (44)

Furthermore, on account of Eq. (18a) the expressions of the harmonics for the effective shearing stress, the
effective vertical stress and the pore water pressure (based on Egs. (11), (12) and (22), respectively) are given
by

e, =G ((U) +ik W) (45)

T2, = (0 4+ 2G7) (W) + 2 (i) U (46)
o __ ﬁ : 0 0/

Py = —J;(linUn + 7)) (47)

The four unknown integration constants 4,, of Egs. (41) and (42) may now be determined by employing the
boundary conditions given by Egs. (34a) and (34b) with the second of Eq. (34b), in view of Egs. (30) and
(36b), receiving the form

TP (z=0)=P°(z=0) = —P°(z=0) (48)

z,n
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Thus, one can write down the following system of equations for the determination of the integration
constants A4,,,:

Ap e 4 Ay, €27 4 Ay, e Ay, e =0

FinA i, € 12,2, €27 4 13,43, €8 4 1y Ag, e =0

(q17r10A1n + @aranAan + qar3nAzn + qaranAan) +12, (A1, + Azy + A3, + Asy) =0

(7 +2G" + B1) g1+ goAn + 45 + @i + (7 + B/ )i(risin + radss & rudsy + rads) = F,
(49)

With the integration constants A4y,, A,, A3, and A4, known, any response associated with the outer
approximation can be estimated with the aid of Eqgs. (41), (42), (46) and (47), for the nth harmonic F;,.

4.3. Solution for the boundary layer correction

On the basis of Eq. (18b), the governing equation of the boundary layer for the pore fluid pressure,
Eq. (31), can be written as
()~ ppy g (50)
Following the argument of Mei and Foda (1981), Eq. (50) implies that the boundary layer thickness for the
nth harmonic is

k /1

For the solution of Eq. (50) one assumes that

P°(z) = I'e~ (52)
where s has to be determined. Thus, Eq. (50), with the aid of Egs. (51) and (52) becomes
1.
F(SZ-FEI) =0 (53)
which can be solved for the two roots
1—i
S| =+—— 54
12=*5 (54)
Hence, the general solution of Eq. (50), in view of Eq. (52) is given by
P:(Z) = Fln e’1? + an e (55)

The two arbitrary constants I'; and I, in Eq. (55) may be related to the known pore fluid pressure of the
outer field, P°, by employing the boundary conditions given by Eq. (36). Thus, one receives

n?

1 ev20-0)

Iy, = —F)(z=0) Iy, = +P)(z = 0) (56)

1 —ev201-i)’ 1 — ev2(1-i)

4.4. Outline of response analysis procedure

It has already been mentioned through Egs. (17)—(19) that the total response of the system is given as the
sum of the outer approximation response and the boundary layer correction response, if any. Thus, in view
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of the equations found in the previous sections, the outline of the response analysis procedure for the total
vertical displacement, pore fluid pressure and vertical effective stress in the whole domain can be sum-
marized as follows:

1. Solve the system of Eq. (49) for A,,, A»,, A3, and Ay,.
2. Calculate Wy, Uy, T?, and Py from Eqgs. (41), (42), (46) and (48), respectively.
3. Determine I'y, and I'y, from Eq. (55) and PP from Eq. (54). The latter, after elaboration, yields

P(e) = Py = Pz = 0)[—e" 4 V2! e /(1 — 1) (57)
4. Determine T° from Eq. (30).

z,n

5. Determine W' (z) = WP from Eq. (29) after integration with respect to z. The integration constant can be
found by employing the condition that W°(z = d,) = 0. Thus, one has

2d, i, Ly =i L - _

Wb = POz = 0)% [— i — V210 e TV 4 Zelﬁ} /[(/L +267)(1 — V2170 (58)

6. Finally, on the basis of the general expressions (17)—(19), the expressions of the applied load given by
Egs. (2)-(4) and the aforementioned steps, the resulting expressions for the relative vertical solid dis-
placement, pore fluid pressure and effective vertical solid stress can be written in the form

2048
w(x,z,t) = Re Z(Wn0 + WP et for 0<z<d,
0
2048 B
w(x,z,t) = Re Z we en =) ford, <z<H
0

2048
p(x,z,t) = Re Z(P,f’ + PP)e=) for 0<z<d,

" (59)

2048
p(x,z,t) = Re Z P’ e ford, <z<H
0

2048
T.0(x,2,t) = Re Z(T0 + TZ'?n) e for 0<z<d,

z,n
0

2048
T.a(x,2,t) = Re Z T en=) ford, <z<H
0

The special case of the harmonic for » = 0 will be discussed in detail in the next section.

4.5. The special case of harmonic for n = 0

One can see that for the case of n = 0, Eq. (4) implies that 4,_o = 0, which leads to zero values for the
coefficients by, dy, by, and ¢, of Eq. (39), thus rendering the solution of Eq. (49) impossible. Moreover, the
value of /,_y = 0 gives an infinite value of boundary layer depth through Eq. (51). This problem is solved by
calculating separately the term @,_¢(z) for any response function.

On substituting the value of 1,_¢ = 0 into the governing equations of both the outer approximation and
the boundary layer correction, Egs. (37), (38) and (50), respectively, and employing the boundary condi-
tions of the problem it is easily shown that
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o) = o F (=)
L A +2G +B/f
_ ¢ 1 B/f
U,,:()(Z) =0
o e Lp B
Proz) = A Terw Yy
_ ¢ Blf
Py y(z) = +2Fm (60)
P,,:()(Z) =0
o ! 2267
) =P 36+ By
_ ¢ Blf
A A T T
T;,n:O(z) = IfiF

It is worth noting that for the case of the frequency factor 4,_o = 0, Eq. (50) with its original form given by
Eq. (31), simulates the Terzaghi equation for one-dimensional consolidation. In such a case, since the only
time scale is the diffusion time, the boundary layer is the entire soil depth (Mei and Foda, 1981), i.e.,
d,—o=H.

5. Numerical results and discussion

As an application of the approximate solution procedure presented in this work, as well as for the sake of
comparison of the results obtained by this solution procedure with those found by the exact solution
procedure in Theodorakopoulos (2003), the problem of a single poroelastic soil layer of depth 18 m,
extending to infinity in the lateral directions, resting on an impervious bedrock and subjected to a surface
vertical strip load moving at a constant velocity ¢, was investigated. The numerical results of this section
have been obtained on the basis of the numerical values of the material coefficients given in Table 1. The
value of bulk modulus f = 2.45 x 10° N/m? corresponds to the compressibility of pure water for full
saturation, whereas the values of permeability k¥ = 10~ m?®s/kg =107 m/s (fine material) and k = 1077
m?®s/kg = 1073 m/s (coarse material) are typical values for the soil medium of the problem considered. The
main physical quantities of interest in this investigation are the vertical displacement of the solid, w(x, z, ¢),
the pore water pressure, p(x, z, t), and the vertical effective stress, 7.(x, z, #). The variation of these quantities

Table 1
Numerical values of coefficients for water fully saturated poroelastic material
Shear modulus of solid G =10%-0.2 x 10° N/m?
Bulk modulus of water B =2.45x 10° N/m?
Poisson’s ratio v=0.35
Solid density p, = 1816 kg/m?
Water density pe = 1000 kg/m?
Porosity f =040
Permeability k=10"°-10"7 m®s/kg=10"-10"3 m/s

Coefficient of material damping 0=0.1
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with respect to the velocity ¢, permeability &, porosity f and shear modulus of solid G, according to the
approximate theory of Mei and Foda (1981) and consequently the accuracy of the present method against
the exact one, are evaluated in this section.

In what follows, the time ¢ = 0 corresponds to the instant at which the center of the applied load passes
the point with x = 0 and z = 0, at which the maximum value of any response function occurs. Furthermore,
it is clear that any response pattern underneath the load, at any time ¢, will appear to be the same for an
observer traveling with velocity c.

5.1. The boundary layer correction contribution

For the range of values of material properties and load velocities used in this work, the validity of the
basic assumptions of the theory of Mei and Foda (1981) as applied to the problem of this paper is
investigated firstly. Mention has already been made that the solution presented herein must satisfy the
expressions given by Eqs. (20) and (32). Table 2 shows the values of the quantities R,_;, d,—; and H/d,—, for
various combinations of permeability, shear modulus and load speed. It should be noted that, due to the
nature of Egs. (20) and (32), for the harmonic with » = 1 the quantities R,—; and d,_; correspond to
minimum value of R and maximum layer depth d,, respectively, for the total number of harmonics. Thus,
one can observe that for low permeability, both expressions (20) and (32) give values well above unity,
whereas for high permeability both the R,—; and the ratio H/d,—, are hardly greater than unity, especially
for high shear modulus and low load velocity. From Table 2, it is also evident, as expected (Mei and Foda,
1981), that the boundary layer thickness decreases with decreasing permeability, decreasing shear modulus
and increasing frequency (with 4,c¢ being the frequency factor).

The effect of adding the contribution of the boundary layer correction to the outer approximation re-
sponse is shown in Figs. 2-4 for the vertical solid displacement, porewater pressure and solid vertical
effective stress, respectively. As mentioned in a previous section, any response of the outer approximation
solution is independent of the value of k. More specifically, Fig. 2(a) and (b) shows the vertical distribution
of both the outer approximation and total response of the maximum vertical displacement for two different
values of permeability k, G = 103 N/m? and a specific value of load velocity in each figure. One can see that
for both values of load velocity, the effect of boundary layer correction is a small percentage of the total
displacement response and increases with increasing permeability. Indeed, for £ = 10~ m3 s/kg = 10> m/s
the outer approximation response is of about 94% of the total response at the free surface and in this case
the boundary layer correction can be neglected for engineering purposes. More details about this will be
given in the following section. It should be noted that the discrepancy between the outer approximation and
the total response over the whole soil layer depth is due to harmonic for n = 0, for which d,_o = H, as
mentioned in a previous section.

Fig. 3(a) and (b) shows the vertical variation of both the outer approximation and the total response
concerning the pore water pressure, again for two different values of permeability k£, G = 108 N/m? and a

Table 2
Maximum value of boundary layer depth from Eq. (51) with n = 1, for various combinations of &, ¢ and G
G (N/m?) k=10 m’s/kg=10"> m/s, f = 0.40 k=10"7 m?s/kg=10"% m/s, f = 0.40
c=20m/s ¢ =100 m/s ¢ =20 m/s ¢ =100 m/s
R d—y (m) H/d—y Ry doy () H/dmy Ry dyoy (m) H/d—y R, dy—y (m) H/d,-
108 400 1.148 16 1990 0.513 35 4.0 11.48 1.6 19.9 5.13 3.5
0.50x 108 790 0.825 22 3980 0.369 49 7.9 8.25 22 39.8 3.69 4.9
0.35x10% 1140 0.694 26 5670 0.310 58 11.4 6.94 2.6 56.7 3.10 5.8

0.20x 108 1980 0.528 34 9930 0.236 76 19.8 5.28 3.4 99.3 2.36 7.6
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Fig. 2. Effect of the boundary layer correction on maximum solid vertical displacement versus depth for ¢ =20 m/s (a) and ¢ =
100 m/s (b).
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Fig. 3. Effect of the boundary layer correction on the profile of the porewater pressure for ¢ = 20 m/s (a) and ¢ = 100 m/s (b).

specific value of load velocity in each figure. It can be seen that, for both values of velocity ¢, in the case of
low permeability (k = 10~° m? s/kg = 10~ m/s) the total pore water pressure p(0,z, 0) increases rapidly with
depth near the free surface and then diminishes gradually up to a constant value. On the other hand, for
k =10"7 m3s/kg=10"* m/s, which implies a boundary layer depth not small compared to the total layer
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Fig. 4. Effect of the boundary layer correction on the profile of maximum effective vertical stress for ¢ = 20 m/s (a) and ¢ = 100 m/s (b).

depth H (see Table 2), the variation of the total pore water pressure is similar but with a lower maximum
value near the surface than in the previous case. This lower maximum value of the pore pressure near the
surface in the case of k = 1077 m?s/kg = 1073 m/s is due to the fact that for a more permeable poroelastic
soil the water is more free to squeeze in and out. It should be also mentioned here that the pore water
pressure distribution in Fig. 3(a) and (b) is similar to the one given in Foda and Mei (1983) for the case of
Rayleigh waves in a poroelastic half-space. As far as the distribution of the vertical effective stress 7. is
concerned, one can see from Fig. 4(a) and (b) that the variation of 7,(0,z,0) versus z for the same values of
the parameters as in Fig. 3(a) and (b), follows similar but opposite with respect to k£ patterns to those
observed for p(0,z,0), starting from 400 kN/m? at the surface, since both the solid and fluid constituents
share the applied load at any depth.

Referring back to Fig. 3(a) and (b), it can be observed that, for fine materials (k = 10~° m?®s/kg =103
m/s), the vertical pore water distributions given by the outer approximation solution and the total solution
are nearly the same in any respect except in the part near the free surface where the effect of the boundary
layer correction gives the expected distribution, that is, zero pore water pressure at the free surface (Eq.
(35b)). It is also of interest to note that the value of p° at the surface, which has an absolute value equal to
the vertical effective stress component due to the boundary layer correction, t°, approaches the value of the
applied stress F = 400 kN/m? (Fig. 3(a) and (b)), whereas the value of 2 is very close to zero (Fig. 4(a) and
(b)). This is due to the high value of water compressibility f = 2.45 x 10° N/m? used here as compared to
the shear modulus G = 108 N/m? (G/B = 0.041), which affects the values of the coefficients of Egs. (47) and
(46) for P, and T7,, respectively. For a rather compressible fluid with f = 108 N/m? (G/f = 1.0), the sharing
of the applied load between t° and t° (= —p°) changes, thus, reducing the values of p° at the surface to 176
and 183 kN/m? for ¢ = 20 and 100 m/s, respectively.

5.2. Comparison between approximate method and exact solution

Fig. 5(a)—(c) shows the variation with depth of the vertical displacement, porewater pressure and solid
vertical effective stress, respectively, according to both the present approximate method and the exact
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Fig. 5. Comparison of the maximum vertical displacement (a), porewater pressure (b) and vertical effective stress (c) between the
present approximate method and exact solution (k = 10~ m3 s/kg =107 m/s, G = 10® N/m?).

solution of Theodorakopoulos (2003), for G = 10 N/m?, k = 10~° m?s/kg = 107> m/s and for two values of
load velocity ¢ (20, 100 m/s) in each figure. It can be seen that the agreement between the two solutions is
very satisfactory for all three response functions. These conclusions are the consequence of the fact that in
the case of a fine material (k = 10~ m® s/kg = 10~° m/s) the values of R,_; and H /d,—, are much larger than
unity, as required by the theory of Mei and Foda (1981). Furthermore, it is observed from Fig. 5(a)—(c),
that for ¢ = 100 m/s, the agreement between the two solutions has been even more satisfactory due to even
more larger values of the quantities R,—; and H/d,—, computed in such a case.
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The comparison of the response of the soil medium under moving loads between the present approxi-
mate method and the exact solution for the case of a coarse material (k = 1077 m® s/kg = 1073 m/s), is shown
in Fig. 6(a)—(c), again for two values of load velocity ¢ (20, 100 m/s) in each figure. One can see that the
agreement between the two solutions, as far as the vertical displacement is concerned, Fig. 6(a), is yet
excellent, although for the coarse material the depth of the boundary layer d,—; is not small compared to the
layer depth H (Table 2). Moreover, the same conclusion can be drawn for the case of a softer material, as
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Fig. 6. Comparison of the maximum vertical displacement (a), porewater pressure (b) and vertical effective stress (c) between the
present approximate method and exact solution (k = 1077 m?s/kg =103 m/s, G = 10 N/m?).
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shown in Fig. 7, where the vertical displacement is plotted versus depth for two values of permeability,
c=20m/s and G = 0.2 x 10® N/m?.

However, referring back to Fig. 6(b) and (c), it can be observed that, for a coarse material, there is a
discrepancy in both the porewater pressure and the vertical solid effective stress between the two solutions.
More specifically, the use of the present approximate method overestimates the porewater pressure and, as
an expectation, underestimates the vertical solid effective stress. These discrepancies for the case of k = 1077
m?®s/kg = 1073 m/s can be attributed to the large depth of the boundary layer, which seems to affect the
distribution of the applied load between solid and fluid more than it affects the overall response of the
vertical displacement when the present method is used. It should be reminded that the value of the ratio
H/d,— increases proportionally to the square root of ¢, and this explains the smaller discrepancies in p and
7, between the two solutions when the load velocity increases from ¢ = 20 to 100 m/s, respectively, as shown
in Fig. 6(b) and (c).

Bearing in mind the above results and having a closer inspection of Figs. 3(a)-(b) and 4(a)-(b), one can
conclude that a satisfactory agreement between the two solutions, is expected, as far as the porewater
pressure and the vertical solid effective stress are concerned, if and only if the total response of the medium
is governed by the outer approximation solution of the present method, and this occurs in the case of a fine
material.

As mentioned before, there exists an excellent agreement of the displacement response between the
present approximate method and the exact solution of Theodorakopoulos (2003) for both fine and coarse
materials and for any range of load speed within the limits used in practice, (¢ = 100 m/s = 360 km/h). This
is also demonstrated in Table 3, where the maximum surface displacement values are calculated for various
values of the poroelastic material properties and velocity c. It can be seen that for a hard solid material,
G = 10% N/m?, the agreement between the two solutions is yet excellent even for more permeable material,
k = 107° m? s/kg = 1072 m/s, for which d,_; > H. It is of interest to note that the largest value of load speed
considered in these calculations, ¢ = 100 m/s, has been a rather small percentage of the shear wave velocity
vs = 1/G/p, = 234.66 m/s. Also, in the case of G = 10® N/m?, the effect of porosity is negligible when the
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Fig. 7. Comparison of the maximum vertical displacement between the present approximate method and the exact solution (¢ = 20
m/s, G = 0.2 x 10° N/m?).
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Table 3
Comparison of the maximum vertical surface displacement between the present approximate method and the exact solution for various
values of permeability, porosity, shear modulus and load velocity

c ¢/Us, % Exact solution Present solution
=020 f=040 f=0.20 f=0.40
w w we w w° w
G =10 vy = 234.66 m/s (845 km/h)
k=107 m3s/kg=10"> m/s 20 9 6.1 6.2 5.7 6.1 5.7 6.2
65 28 6.2 6.3 5.9 6.3 5.9 6.3
80 34 6.4 6.5 6.0 6.4 6.1 6.4
100 43 6.7 6.6 6.3 6.6 6.3 6.6
k=107 m?s/kg=10"3 m/s 20 9 7.5 7.5 5.7 7.1 5.7 7.2
65 28 7.1 7.1 5.9 6.9 5.9 6.9
80 34 7.2 7.2 6.0 6.9 6.1 6.9
100 43 7.4 7.2 6.3 7.1 6.3 7.1
k=10"% m*s/kg=10"2 m/s 20 9 8.7 8.7 5.7 8.7 5.7 8.6
65 28 8.6 8.5 5.9 8.3 5.9 8.2
80 34 8.6 8.6 6.0 8.2 6.1 8.2
100 43 8.7 8.4 6.3 8.3 6.3 8.2
G =0.35 x 10® v, = 138.83 m/s (500 km/h)
k=107 m?s/kg=10"> m/s 20 14 17.3 17.4 16.1 17.2 16.2 17.3
65 47 19.0 19.1 18.2 19.2 18.0 19.0
80 58 20.0 18.9 19.7 20.7 19.3 20.3
100 72 22.7 22.2 23.2 24.2 22.2 23.2
k=10"7 m?s/kg=10"3 m/s 20 14 19.9 19.9 16.1 19.1 16.2 19.1
65 47 20.8 20.6 18.2 20.2 18.0 20.1
80 58 21.9 21.8 19.7 21.7 19.3 21.3
100 72 23.2 21.6 23.2 25.1 22.2 24.1
k=10"% m3s/kg=10"2 m/s 20 14 24.1 24.1 16.1 23.5 16.2 23.4
65 47 23.5 23.0 18.2 22.8 18.0 22.5
80 58 24.3 24.3 19.7 24.0 19.3 23.5
100 72 26.3 24.0 23.2 27.4 22.2 26.2
G =0.20 x 10% v, = 104.94 m/s (378 km/h)
k=10"° m®s/kg=10"° m/s 20 19 30.4 30.4 28.4 30.3 28.5 30.3
65 62 36.5 36.4 35.8 37.6 34.8 34.8
80 76 41.6 41.3 433 45.0 40.8 42.5
100 95 53.9 46.3 70.6 72.4 61.3 63.1
k=10"7 m®s/kg=10"3 m/s 20 19 33.8 33.8 28.4 32.7 28.5 32.7
65 62 37.5 35.9 35.8 39.0 34.8 38.0
80 76 41.6 40.3 433 46.4 40.8 439
100 95 71.1 59.5 70.6 74.2 61.3 64.7
k=10"° m®s/kg=10"2 m/s 20 19 40.6 40.5 28.4 38.6 28.5 38.5
65 62 442 44.0 35.8 42.5 34.8 41.5
80 76 53.0 48.8 433 49.9 40.8 47.2
100 95 96.4 71.7 70.6 78.6 61.3 68.6

present method is used, in agreement with the case of the exact solution (Theodorakopoulos, 2003). Similar
conclusions can be drawn for the case of G = 0.35 x 10% N/m? as far as the agreement of the values of the
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maximum surface displacement obtained by the two solutions is concerned. However, in an even softer
medium with G = 0.2 x 10® N/m?, the effect of increasing values of permeability and porosity on the above
mentioned agreement is apparent, especially in the range of high speeds, for reasons explained in
Theodorakopoulos (2003).

The relationship of the surface vertical displacement responses for the outer approximation and the total
field solutions of the present method is also of practical value. From the computed values of w° and w in
Table 2 the following are noted:

¢ For any soil medium, increasing w°/w ratios are found with increasing values of load velocity.

¢ For a soil medium with a given value of G, the w°/w ratio decreases with increasing permeability, since
the value w° is constant, i.e., independent of the value of k. Similarly, for a given permeability, the w°/w
ratio increases with decreasing value of G.

o The effect of porosity on the value of w° is only apparent in the case of soft materials with high perme-
ability, especially in the range of high load speeds.

e For a fine soil medium (k = 10~ m® s/kg = 10~° m/s) and low values of ¢, the ratio w°/w is of about 94%,
whereas for a coarse material (k = 1077 m? s/kg =10~ m/s) the corresponding w°/w ratio decreases to
about 80%.

Thus, as mentioned before, it can be concluded, that for a fine material and for the whole range of the load
speeds, the displacement response of the soil layer can be found by only using the outer approximation
solution.

The comparison between the two solution procedures for the porewater pressure at 2.0 m depth and at a
horizontal distance x = 160 m from the origin is shown in Fig. 8(a) and (b) for two values of permeability
and a specific value of load velocity in each figure. One can see that, for a high value of permeability and for
both values of load velocity, the agreement between the two solutions is very satisfactory, as expected. In
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Fig. 8. Comparison of the porewater pressure at 2.0 m depth between the present approximate method and exact solution for various
values of k£ and ¢ = 20 m/s (a) and ¢ = 100 m/s (b).
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addition, the maximum fluid pressure for both solutions occurs at + = 8 and 1.6 s, which are the traveling
times of the moving load up to the plane of observation, AA (Fig. 1), for ¢ = 20 and 100 m/s, respectively.
However, for a more permeable material (k = 10~7 m?®s/kg =103 m/s) and at low speeds, Fig. 8(a), two
differences in porewater pressure response can be observed. The first one has to do with the magnitude of
peak response, being larger when the present approximate method is used, and the second one pertains to
the time at which these peaks occur. One can see that, in the exact solution, the maximum fluid pressure
occurs at a little bit earlier time than that of t = 8 s (¢ = 160 m/20 m/s) for reasons explained in Theodo-
rakopoulos (2003). As far as the negative profile of the porewater pressure as the load moves away from the
point of interest is concerned, the two solutions exhibit similar response for k = 10~7 m?s/kg = 1073 m/s.
This porewater pressure behavior is consistent with earlier theoretical analysis (Siddharthan et al., 1993;
Burke and Kingsbury, 1984). However, this consistency between the two solutions in the negative values of
pressure is not longer true for ¢ = 100 m/s, as shown in Fig. 8(b).

Based on the above stated differences in the porewater pressure responses as computed by both the
present approximate method and the exact solution, and bearing in mind the corresponding comparisons in
Theodorakopoulos (2003) between the exact solution and the method proposed by Siddharthan et al.
(1993), it can be said that for a fine material the response behavior between the pressure of approximate
solution and that of Siddharthan et al. (1993) is similar. This is due to the fact that, in such a case, the
response of the present approximate method is governed by the outer approximation solution and, hence,
both solution procedures are based on the same assumption, that is, of no relative motion between solid
and fluid constituents.

Fig. 9 shows the solid vertical effective stress at 2.0 m depth below the point of interest at x = 160 m for
k=107 m®s/kg =107 m/s and ¢ = 20 m/s. It can be seen that the agreement in the responses between the
present method and the exact solution is excellent as the load approaches and moves away from the plane
of observation (Fig. 1).
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Fig. 9. Comparison of the vertical effective stress at 2.0 m depth between the present approximate method and exact solution (k =
10~° m3s/kg =107 m/s, ¢ = 20 m/s).
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6. Conclusions
On the basis of the preceding developments, the following conclusions can be drawn:

1. The problem of the dynamic response of a fully saturated poroelastic soil layer on bedrock subjected to a
moving strip load on its surface was solved analytically in an approximate way under conditions of plane
strain.

2. The method of solution was based on the theory of Mei and Foda. The solid vertical displacement, pore-
water pressure and solid vertical effective stress were explicitly expressed as the sum of the outer approx-
imation problem and the boundary layer correction. Their variation with the various parameters of the
problem such as shear modulus, permeability, porosity and load velocity was numerically computed.

3. In the case of a soil medium with low permeability (k = 10> m/s), the vertical displacement response
found by the outer approximation solution is of about 95% of the total response and, hence, the bound-
ary layer correction can be neglected for engineering purposes.

4. Similarly, for a soil material with low permeability, the effect of the boundary layer correction on the
porewater and solid vertical effective stress responses is negligible, except near the free surface where
the boundary layer correction gives the expected distributions due to the boundary conditions.

5. However, for a more permeable material (k = 10~ m/s), the effect of the boundary layer correction on
the response was found to be significant, especially in the cases of porewater pressure and vertical effec-
tive stress.

6. The accuracy of the present approximate method has been demonstrated by comparing its predictions
with those obtained by the exact solution. The numerical data that have been presented provide a frame-
work for the range of the material properties for which the present method can be used. Thus,

(i) For a fine material and almost independently of the value of the shear modulus of the soil medium,
the agreement between the present method and the exact solution for any response function is very
satisfactory.

(i1) For a coarse material, the accuracy of the present method in relation to the vertical displacement is
very satisfactory but there exist discrepancies in relation to porewater pressure and solid vertical
effective stress responses between the present and exact solutions.

(iii) The accuracy of the present method compared with the exact solution becomes more pronounced
with increasing load velocity for any range of the values of material properties, except in the case
of a soft material at high speeds.

7. The approximate method presented herein provides an alternative method of analysis of a poroelastic
soil medium under moving loads characterized by simplicity, less computational effort and high accu-
racy, especially in the case of fine materials.
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