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Abstract

The problem of the dynamic response of a fully saturated poroelastic soil stratum on bedrock subjected to a moving

load is studied by using the theory of Mei and Foda under conditions of plane strain. The applied load is considered to

be the sum of a large number of harmonics with varying frequency in the form of a Fourier expansion. The method of

solution considers the total field to be approximated by the superposition of an elastodynamic problem with modified

elastic constants and mass density for the whole domain and a diffusion problem for the pore fluid pressure confined to

a boundary layer near the free surface of the medium. Both problems are solved analytically in the frequency domain.

The effects of the shear modulus, permeability and porosity of the soil medium and the velocity of the moving load on

the dynamic response of the soil layer are numerically evaluated and compared with those obtained by the exact

solution of the problem. It is concluded that for fine poroelastic materials, the accuracy of the present method against

the exact one is excellent.
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1. Introduction

The study of the dynamic behavior of a half-space soil medium under the action of moving loads on its

free surface is of significant importance in the area of geotechnical/structural transportation facilities and

has thus received a great attention over the past decades. Depending on the degree of modeling elaboration

of the soil medium used in the analysis, one can distinguish three categories among the existing published

methods for determining the dynamic response of the ground surface due to moving loads. In the first
category the soil is modeled as a system of Winkler springs, while in the second category the soil is modeled

as a linear elastic or viscoelastic, homogeneous or layered half-space. Finally, in the third category, the soil

medium can be inelastic, poroelastic or gradient elastic. A comprehensive review of the relevant works in

each category can be found in Theodorakopoulos (2003).
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So far, the most comprehensive analytical/numerical works on the dynamic response of a poroelastic

half-space to moving loads under conditions of plain strain are those presented by Siddharthan et al.

(1993), based on the assumption of no relative motion between solid and fluid constituents and by

Theodorakopoulos (2003), accounting for the full generality of Biot�s (1956) governing field equations. In
the latter contribution, the exact vertical soil displacements and stresses as well as the pore water pressure of

a poroelastic soil layer on rigid bedrock subjected to a strip load moving at constant velocity were explicitly

expressed and numerically evaluated for various values of shear modulus, compressibility of fluid, porosity,

permeability and load speed. Thus, a detailed assessment of the relative importance of those parameters on

the response was accomplished.

However, the exact analytical solution of the above problem was rather complicated. In an effort to

obtain an approximate analytical solution of the same problem, characterized by simplicity and satisfactory

accuracy, the method of Mei and Foda (1981) was employed in this paper. Among the applications of Mei
and Foda�s (1981) theory in soil dynamics, one can mention the works of Mei and Foda (1981), Foda and

Mei (1983), Mei et al. (1984) and more recently of Theodorakopoulos et al. (2001) in conjunction with

analytical techniques and those of Kattis et al. (1998, 1999, 2003) in conjunction with boundary elements.

According to the arguments of Mei and Foda (1981) in regions not too close to a free surface, the fluid and

solid matrix move as a whole due to the large frictional resistance forces in the pores of the medium. However,

relative fluid-motion is appreciable within a thin boundary layer near the free surface because of the easiness

with which the fluid can squeeze in or out of the free surface. Thus, a given poroelastic problem involving a

free surface can be approximately solved by first solving an elastodynamic outer problemwith modified elastic
constants and mass density for the whole domain and then making a simple correction near the free surface.

Thus, in this work the problem of determining the dynamic response of a uniform, fully saturated

poroelastic soil layer on rigid bedrock subjected to a moving strip load is solved under conditions of plane

strain by the aforementioned approximate method of Mei and Foda (1981). The distributed load, which

moves at constant velocity, is expanded in Fourier series as in Siddharthan et al. (1993) and Theodorak-

opoulos (2003). The outer approximation, i.e., the modified elastodynamic solution for the whole domain,

as well as the boundary layer correction resulting in the solution of a diffusion problem for the pore fluid

pressure, are both obtained analytically/numerically. The results are compared against those of the exact
method in Theodorakopoulos (2003) in order to establish the range of the various parameters of the

problem for which the accuracy of this approximate method is satisfactory.
2. System considered and moving load representation

The soil system examined and the applied moving load are shown in Fig. 1. The system consists of a

uniform poroelastic soil layer, fully saturated by a viscous fluid, under conditions of plane strain. The fluid
is free to squeeze in and out of the entire upper soil surface. The soil layer has a height H and is fully bonded

on a rigid and impervious bedrock.

For the sake of comparison, the applied load condition and configuration are the same as in Siddharthan

et al. (1993) and Theodorakopoulos (2003). More specifically, the surface vertical strip load moves at a

constant velocity c, has a width 2‘ ¼ 4:0 m, a constant intensity F ðxÞ ¼ F ¼ 400:000 N/m2 and is con-

sidered to be periodic with wave length 2L ¼ 409:6 m (Fig. 1). This applied load is assumed to be expanded

in a Fourier series of the form
F ðx� ctÞ ¼ Re
X1
n¼�1

Fn eiknðx�ctÞ for t > 0

F ðxÞ ¼ Re
X1
n¼�1

Fn eiknx for t ¼ 0

ð1Þ



Fig. 1. Geometry of traveling surface load and plane of observation.
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where Re denotes the real part and the harmonics Fn and the parameter kn vary with n. The entire loading
function, including the ‘‘quiet zone’’ needed for the attenuation of the response due to a passing load before
the beginning of the next cycle, is sampled at 2N þ 1 equally spaced points (Dx ¼ 0:1), numbered from zero

to 2N ¼ 4096. Thus, in accordance with Theodorakopoulos (2003), the discretized loading function of

Eq. (1) may be expressed as a linear combination of N þ 1 ¼ 2049 harmonics of the form
F ðx� ctÞ ¼ Re
X2048
n¼0

Fn eiknðx�ctÞ ð2Þ
where
Fn ¼
‘
L F for n ¼ 0

2 1
np sin np ‘

L

� �
F for n > 0

�
ð3Þ
and
kn ¼ n
p
L

ð4Þ
Eq. (4) indicates that kn varies from zero for n ¼ 0, to 10p ¼ 31:41 for n ¼ 2048. It should be mentioned
here that the limitation on the number of harmonics in the Fourier expansion of the applied load from

infinity in Eq. (1) to 4096 in Eqs. (2) and (3) does not affect the accuracy of the response of the system, since

the response contributions associated with high values of kn are small (Siddharthan et al., 1993; Theodo-

rakopoulos, 2003).
3. Governing equations of motion of the soil system

Assuming plane strain conditions and referring to the rectangular system of co-ordinates x, z shown in

Fig. 1, the linearized dynamic equations of motion of a fully saturated poroelastic medium due to Biot

(1956) in the notation of Mei and Foda (1981), under the assumption of an incompressible solid constituent
and neglecting the inertia mass coupling terms, are given as
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0sx
0x

þ 0sxz
0z

þ f 2

k
ð _uf � _uÞ � ð1� f Þ 0p

0x
¼ ð1� f Þqs€u ð5Þ
0sz
0z

þ 0sxz
0x

þ f 2

k
ð _wf � _wÞ � ð1� f Þ 0p

0z
¼ ð1� f Þqs€w ð6Þ
� f 2

k
ð _uf � _uÞ � f

0p
0x

¼ fqf€u
f ð7Þ
� f 2

k
ð _wf � _wÞ � f

0p
0z

¼ fqf €w
f ð8Þ
f
0 _uf

0x

 
þ 0 _wf

0z

!
þ ð1� f Þ 0 _u

0x

 
þ 0 _w

0z

!
¼ � f

b
_p ð9Þ
where Eqs. (5) and (6) describe the motion of the solid as affected by the motion of the fluid and Eqs. (7)

and (8) describe Darcy�s law of the fluid flow as affected by the motion of the solid. It should be noted that

in the original formulation, Biot (1956) also included apparent inertia terms to describe the dynamic

interaction between the two constituents. However, the apparent mass density, difficult to assess theoret-

ically or experimentally, is often omitted by most researchers as explained in detail by Mei and Foda (1981).

In the above Eqs. (5)–(9), sx and sz are the normal effective stresses of the solid along the x and z co-
ordinates, respectively, sxz is the effective shearing stress of the solid in the x–z plane, p is the fluid pressure, u
and w are the solid displacement components along the x and z directions, respectively, relative to the

bedrock, uf and wf are the corresponding displacement components of the fluid and dots indicate differ-

entiation with respect to time t. Furthermore, f is the porosity, qs and qf are the actual mass densities of the

solid and the fluid, respectively, k denotes the coefficient of permeability, and b is the bulk modulus of the

fully saturating fluid. In general, all functions of the system depend on x, z and t.
For the two-dimensional, plane strain conditions examined herein and with the assumption that Hooke�s

law with hysteretic damping relates stresses and strains of the solid skeleton one has
sx ¼ ðk� þ 2G�Þ 0u
0x

þ k�
0w
0z

ð10Þ
sxz ¼ G� 0u
0z

�
þ 0w

0x

�
ð11Þ
sz ¼ ðk� þ 2G�Þ 0w
0z

þ k�
0u
0x

ð12Þ
in which G� and k� are the complex-valued Lam�e elastic constants given by
G� ¼ Gð1þ idÞ; i ¼
ffiffiffiffiffiffiffi
�1

p
ð13Þ
k� ¼ 2m
1� 2m

G� ð14Þ
with m being the Poisson�s ratio, G the constant shear modulus and d the constant material damping factor.
Adding Eqs. (5) and (7) and Eqs. (6) and (8), respectively, and using Eqs. (10)–(12) in the resulting

expressions one has
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ðk� þ 2G�Þ 0
2u

0x2
þ ðk� þ G�Þ 02w

0x0z
þ G� 0

2u
0z2

� 0p
0x

¼ ð1� f Þqs€uþ fqf€u
f ð15Þ

ðk� þ 2G�Þ 0
2w
0z2

þ ðk� þ G�Þ 02u
0x0z

þ G� 0
2w
0x2

� 0p
0z

¼ ð1� f Þqs€wþ fqf €w
f ð16Þ
Thus, the system of Eqs. (5)–(12) can be replaced by the equivalent one of the five Eqs. (7)–(9), (15) and (16)

with five unknowns u, uf , w, wf and p. The method of solution of the problem considered herein is based on

the theory of Mei and Foda (1981), according to which the total field of a poroelastic problem obeying

Biot�s (1956) theory can be approximated by the superposition of (i) an elastodynamic problem with

modified elastic constants and mass density for the whole domain (the outer approximation) and (ii) a
diffusion problem for the pore fluid pressure confined to a thin boundary layer at the free boundaries of the

domain (the boundary layer correction). This implies that any total response function / ¼ /ðx; z; tÞ of the
system has the form
/ðx; z; tÞ ¼ /oðx; z; tÞ þ /bðx; z; tÞ ð17Þ
where the outer approximation and the boundary layer correction functions are distinguished by the

superscripts o and b, respectively.

Provided that the applied load is given by Eq. (1) and since the layer properties are independent of the

spatial coordinates, any response functions /oðx; z; tÞ, /bðx; z; tÞ and /ðx; z; tÞ of the linear system may be

expressed as a linear combination of corresponding harmonic functions in the form
/oðx; z; tÞ ¼ Re
X1
n¼�1

Uo
nðzÞeiknðx�ctÞ ð18aÞ

/bðx; z; tÞ ¼ Re
X1
n¼�1

Ub
nðzÞeiknðx�ctÞ ð18bÞ

/ðx; z; tÞ ¼ Re
X1
n¼�1

UnðzÞeiknðx�ctÞ ð18cÞ
with
UnðzÞ ¼ Uo
nðzÞ þ Ub

nðzÞ ð19Þ

in which, for example, Uo

nðzÞ ¼ Uo
n represents the dependence of the outer approximation response /oðx; z; tÞ

on z only, for the nth harmonic.
3.1. The outer approximation problem

On the assumption that the dimensionless quantity R
R ¼ f kncH 2

Gk
� 1 ð20Þ
Mei and Foda (1981) argued that the outer region moves as a whole like an undrained system. It should be
noted that the quantity knc in Eq. (20) represents the parameter of frequency in the domain of Fourier

expansion considered. Thus, one has
wo ¼ ðwfÞo; uo ¼ ðufÞo ð21Þ
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On the basis of Eq. (21), one can obtain from Eq. (9), after integration with respect to time, the following

expression for the associated pore fluid pressure
po ¼ � b
f

0uo

0x

�
þ 0wo

0z

�
ð22Þ
Consequently, on making use of Eqs. (21) and (22) into Eqs. (15) and (16) and integrating the resulting

expressions with respect to time, one receives
G� 02uo

0x2

�
þ 02uo

0z2

�
þ ðk� þ G� þ b=f Þ 02uo

0x2

�
þ 02wo

0x0z

�
¼ ½ð1� f Þqs þ fqf �€uo ð23Þ

G� 02wo

0x2

�
þ 02wo

0z2

�
þ ðk� þ G� þ b=f Þ 02wo

0z2

�
þ 02uo

0x0z

�
¼ ½ð1� f Þqs þ fqf �€wo ð24Þ
It is observed that Eqs. (23) and (24) are the same as in classical elastodynamics for a simple phase medium

but with new equivalent elastic constants and mass density given by
G�
e ¼ G� ð25aÞ

k�e ¼ k� þ b=f ð25bÞ

qe ¼ ð1� f Þqs þ fqf ð25cÞ
Thus, the outer region problem is essentially reduced to a usual elastodynamic problem with a free surface,

which can be easily solved to determine wo and uo. Then, the pore fluid pressure is determined by Eq. (22),

which simply states that in the undrained outer region the pore pressure is related to the dilatation of the

solid matrix. It should be noted that the part of response due to the outer approximation solution does not

depend on the permeability k of the poroelastic medium.

3.2. The boundary layer correction

According to the theory of Mei and Foda (1981), within a thin boundary layer near the free surface of

the medium, for any functions one has 0=0z � 0=0x, which implies that 0sbxz=0x ¼ 0 and the dominant term

is 02wb=0z2 relative to which the inertia terms are negligible. Based on these assumptions, Eqs. (6), (8), (9)
and (12) can be written as
0sbz
0z

þ f 2

k
ðð _wfÞb � _wbÞ � ð1� f Þ 0p

b

0z
¼ 0 ð26Þ

� f 2

k
ðð _wfÞb � _wbÞ ¼ f

0pb

0z
ð27Þ

f
0
0z

ðð _wfÞb � _wbÞ þ 0 _wb

0z
¼ � f

b
_pb ð28Þ

sbz ¼ ðk� þ 2G�Þ 0w
b

0z
ð29Þ
where Eq. (27) is the static form of Darcy�s law. Thus, the system of Eqs. (26)–(29) can be solved to

determine wb, ðwfÞb, sbz and pb in the boundary layer.
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Adding Eqs. (26) and (27) one receives 0sbz =0z ¼ 0pb=0z, which after integration with respect to z (with
the integration constant equal to zero since both sbz and pb vanish beyond the limit of the boundary layer)

yields
sbz ¼ pb ð30Þ
Consequently, after differentiation of Eq. (27) with respect to z, substitution of the resulting expression into

Eq. (28) and use of Eqs. (29) and (30), one receives
k
02pb

02z
� D _pb ¼ 0 with D ¼ f

b
þ 1

k� þ 2G� ð31Þ
which is a heat diffusion equation and can be easily solved. Eq. (31) is the governing equation of the

boundary layer for the pore fluid pressure pb. This boundary layer formulation is only valid if
H=d � 1 ð32Þ

in which d is the boundary layer thickness.
4. Solution of the governing equations

4.1. Boundary conditions

The solution of the governing equations for the whole domain (outer region and boundary layer) can be

found by employing the following four boundary conditions:
at the bottom ðz ¼ HÞ: w ¼ wo ¼ 0; u ¼ uo ¼ 0 ð33aÞ

at the surface ðz ¼ 0Þ: sxz ¼ soxz ¼ 0; sz ¼ soz þ sbz ¼ F ð33bÞ
or in terms of the corresponding harmonics, on account of Eqs. (17) and (18), by
at the bottom ðz ¼ HÞ: W o
n ¼ 0; Uo

n ¼ 0 ð34aÞ

at the surface ðz ¼ 0Þ: T o
xz;n ¼ 0; T o

z;n þ T b
z;n ¼ Fn ð34bÞ
In addition, the governing equations of the boundary layer can be solved subject to the boundary condi-

tions
at the bottom of the boundary layer ðz ¼ dÞ: pb ¼ 0 ð35aÞ

at the surface ðz ¼ 0Þ: p ¼ po þ pb ¼ 0 ð35bÞ

or in terms of the corresponding harmonics
at the bottom of the boundary layer ðz ¼ dÞ: P b
n ¼ 0 ð36aÞ

at the surface ðz ¼ 0Þ: P o
n þ P b

n ¼ 0 ð36bÞ
4.2. Solution for the outer approximation

It is noticeable that, in the Mei and Foda�s (1981) theory, the boundary layer does not affect the traction

of the free surface so that the outer approximation may be solved first by the usual methods of elasticity
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theory. Thus, on making use of general expression (18a) and Eq. (25), the system of the governing Eqs. (23)

and (24) for the two displacement responses of the soil layer in the outer domain reads
a1ðW o
n Þ

00 þ b1W o
n þ d1ðUo

n Þ
0 ¼ 0 ð37Þ

a2ðUo
n Þ

00 þ b2Uo
n þ d2ðW o

n Þ
0 ¼ 0 ð38Þ
in which, a prime denotes differentiation with respect to z and the coefficients a1, b1, d1, a2, b2 and d2 are

given by the following expressions
a1 ¼ k�e þ 2G�

b1 ¼ �G�k2n þ qek
2
nc

d1 ¼ ðk�e þ G�Þikn
a2 ¼ G�

b2 ¼ �ðk�e þ 2G�Þk2n þ qek
2
nc

2

d2 ¼ d1

ð39Þ
Assuming solutions for the two displacements of the form
W o
n ¼ Aeqz; Uo

n ¼ Beqz ð40Þ

the general solution of the system of Eqs. (37) and (38) is of the form
W o
n ¼ A1n e

q1z þ A2n e
q2z þ A3n e

q3z þ A4n e
q4z ð41Þ

Uo
n ¼ B1n e

q1z þ B2n e
q2z þ B3n e

q3z þ B4n e
q4z ð42Þ
where
Bjn ¼ rjnAjn; rjn ¼ � a1q2j þ b1
d1qj

ð43Þ
and qj (j ¼ 1–4) are the roots of the fourth-degree characteristic equation of the system of Eqs. (37) and

(38) given by
det
a1q2 þ b1 d1q

d2q a2q2 þ b2

����
���� ¼ 0 ð44Þ
Furthermore, on account of Eq. (18a) the expressions of the harmonics for the effective shearing stress, the

effective vertical stress and the pore water pressure (based on Eqs. (11), (12) and (22), respectively) are given

by
T o
xz;n ¼ G�ððUo

n Þ
0 þ iknW o

n Þ ð45Þ

T o
z;n ¼ ðk� þ 2G�ÞðW o

n Þ
0 þ k�ðiknÞUo

n ð46Þ

P o
n ¼ � b

f
ðiknUo

n þ ðW o
n Þ

0Þ ð47Þ
The four unknown integration constants Ajn of Eqs. (41) and (42) may now be determined by employing the
boundary conditions given by Eqs. (34a) and (34b) with the second of Eq. (34b), in view of Eqs. (30) and

(36b), receiving the form
T b
z;nðz ¼ 0Þ ¼ P b

n ðz ¼ 0Þ ¼ �P o
n ðz ¼ 0Þ ð48Þ
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Thus, one can write down the following system of equations for the determination of the integration

constants Ajn:
A1n e
q1H þA2n e

q2H þ A3n e
q3H þ A4n e

q4H ¼ 0

r1nA1n e
q1H þ r2nA2n e

q2H þ r3nA3n e
q3H þ r4nA4n e

q4H ¼ 0

ðq1r1nA1n þ q2r2nA2n þ q3r3nA3n þ q4r4nA4nÞ þ iknðA1n þ A2n þ A3n þ A4nÞ ¼ 0

ðk� þ 2G� þ b=f Þðq1A1n þ q2A2n þ q3A3n þ q4A4nÞ þ ðk� þ b=f Þiknðr1nA1n þ r2nA2n þ r3nA3n þ r4nA4nÞ ¼ Fn

ð49Þ

With the integration constants A1n, A2n, A3n and A4n known, any response associated with the outer

approximation can be estimated with the aid of Eqs. (41), (42), (46) and (47), for the nth harmonic Fn.

4.3. Solution for the boundary layer correction

On the basis of Eq. (18b), the governing equation of the boundary layer for the pore fluid pressure,

Eq. (31), can be written as
ðP b
n Þ

00 � ð�ikncÞ
k

DP b
n ¼ 0 ð50Þ
Following the argument of Mei and Foda (1981), Eq. (50) implies that the boundary layer thickness for the

nth harmonic is
dn ¼

ffiffiffiffiffiffiffi
k
knc

s ffiffiffiffi
1

D

r
ð51Þ
For the solution of Eq. (50) one assumes that
P b
n ðzÞ ¼ Cesz ð52Þ
where s has to be determined. Thus, Eq. (50), with the aid of Eqs. (51) and (52) becomes
C s2
�

þ 1

d2
n

i

�
¼ 0 ð53Þ
which can be solved for the two roots
s1;2 ¼ � 1� i

dn
ffiffiffi
2

p ð54Þ
Hence, the general solution of Eq. (50), in view of Eq. (52) is given by
P b
n ðzÞ ¼ C1n e

s1z þ C2n e
s2z ð55Þ
The two arbitrary constants C1 and C2 in Eq. (55) may be related to the known pore fluid pressure of the

outer field, P o
n , by employing the boundary conditions given by Eq. (36). Thus, one receives
C1n ¼ �P o
n ðz ¼ 0Þ 1

1� e
ffiffi
2

p
ð1�iÞ

; C2n ¼ þP o
n ðz ¼ 0Þ e

ffiffi
2

p
ð1�iÞ

1� e
ffiffi
2

p
ð1�iÞ

ð56Þ
4.4. Outline of response analysis procedure

It has already been mentioned through Eqs. (17)–(19) that the total response of the system is given as the

sum of the outer approximation response and the boundary layer correction response, if any. Thus, in view
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of the equations found in the previous sections, the outline of the response analysis procedure for the total

vertical displacement, pore fluid pressure and vertical effective stress in the whole domain can be sum-

marized as follows:

1. Solve the system of Eq. (49) for A1n, A2n, A3n and A4n.

2. Calculate W o
n , U

o
n , T

o
z;n and P o

n from Eqs. (41), (42), (46) and (48), respectively.

3. Determine C1n and C2n from Eq. (55) and P b
n from Eq. (54). The latter, after elaboration, yields
P b
n ðzÞ ¼ P b

n ¼ P o
n ðz ¼ 0Þ½�esz þ e

ffiffi
2

p
ð1�iÞ e�sz�=ð1� e

ffiffi
2

p
ð1�iÞÞ ð57Þ
4. Determine T b
z;n from Eq. (30).

5. Determine W b
n ðzÞ ¼ W b

n from Eq. (29) after integration with respect to z. The integration constant can be

found by employing the condition that W b
n ðz ¼ dnÞ ¼ 0. Thus, one has
W b
n ¼ P o

n ðz ¼ 0Þ
ffiffiffi
2

p
dn

1� i

h
� e

1�iffiffi
2

p
dn
z � e

ffiffi
2

p
ð1�iÞ e

� 1�iffiffi
2

p
dn
z þ 2e

1�iffiffi
2

p
i.

½ðk� þ 2G�Þð1� e
ffiffi
2

p
ð1�iÞÞ� ð58Þ
6. Finally, on the basis of the general expressions (17)–(19), the expressions of the applied load given by

Eqs. (2)–(4) and the aforementioned steps, the resulting expressions for the relative vertical solid dis-

placement, pore fluid pressure and effective vertical solid stress can be written in the form
wðx; z; tÞ ¼ Re
X2048
0

ðW o
n þ W b

n Þeiknðx�ctÞ for 06 z6 dn

wðx; z; tÞ ¼ Re
X2048
0

W o
n eiknðx�ctÞ for dn 6 z6H

pðx; z; tÞ ¼ Re
X2048
0

ðP o
n þ P b

n Þeiknðx�ctÞ for 06 z6 dn

pðx; z; tÞ ¼ Re
X2048
0

P o
n e

iknðx�ctÞ for dn 6 z6H

sz;nðx; z; tÞ ¼ Re
X2048
0

ðT o
z;n þ T b

z;nÞeiknðx�ctÞ for 06 z6 dn

sz;nðx; z; tÞ ¼ Re
X2048
0

T o
z;n e

iknðx�ctÞ for dn 6 z6H

ð59Þ
The special case of the harmonic for n ¼ 0 will be discussed in detail in the next section.

4.5. The special case of harmonic for n ¼ 0

One can see that for the case of n ¼ 0, Eq. (4) implies that kn¼0 ¼ 0, which leads to zero values for the

coefficients b1, d1, b2, and c2 of Eq. (39), thus rendering the solution of Eq. (49) impossible. Moreover, the

value of kn¼0 ¼ 0 gives an infinite value of boundary layer depth through Eq. (51). This problem is solved by

calculating separately the term Un¼0ðzÞ for any response function.

On substituting the value of kn¼0 ¼ 0 into the governing equations of both the outer approximation and

the boundary layer correction, Eqs. (37), (38) and (50), respectively, and employing the boundary condi-
tions of the problem it is easily shown that
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W o
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‘

L
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1

k� þ 2G� þ b=f
ðz� HÞ

W b
n¼0ðzÞ ¼

‘

L
F

1

k� þ 2G� þ b=f
b=f

k� þ 2G� ðz� HÞ

Un¼0ðzÞ ¼ 0

P o
n¼0ðzÞ ¼ � ‘

L
F

b=f
k� þ 2Gþ b=f

P b
n¼0ðzÞ ¼ þ ‘

L
F

b=f
k� þ 2G� þ b=f

Pn¼0ðzÞ ¼ 0

T o
z;n¼0ðzÞ ¼

‘

L
F

k� þ 2G�

k� þ 2G� þ b=f

T b
z;n¼0ðzÞ ¼

‘

L
F

b=f
k� þ 2G� þ b=f

Tz;n¼0ðzÞ ¼
‘

L
F

ð60Þ
It is worth noting that for the case of the frequency factor kn¼0 ¼ 0, Eq. (50) with its original form given by

Eq. (31), simulates the Terzaqhi equation for one-dimensional consolidation. In such a case, since the only

time scale is the diffusion time, the boundary layer is the entire soil depth (Mei and Foda, 1981), i.e.,

dn¼0 ¼ H .
5. Numerical results and discussion

As an application of the approximate solution procedure presented in this work, as well as for the sake of

comparison of the results obtained by this solution procedure with those found by the exact solution
procedure in Theodorakopoulos (2003), the problem of a single poroelastic soil layer of depth 18 m,

extending to infinity in the lateral directions, resting on an impervious bedrock and subjected to a surface

vertical strip load moving at a constant velocity c, was investigated. The numerical results of this section

have been obtained on the basis of the numerical values of the material coefficients given in Table 1. The

value of bulk modulus b ¼ 2:45� 109 N/m2 corresponds to the compressibility of pure water for full

saturation, whereas the values of permeability k ¼ 10�9 m3 s/kg¼ 10�5 m/s (fine material) and k ¼ 10�7

m3 s/kg ¼ 10�3 m/s (coarse material) are typical values for the soil medium of the problem considered. The

main physical quantities of interest in this investigation are the vertical displacement of the solid, wðx; z; tÞ,
the pore water pressure, pðx; z; tÞ, and the vertical effective stress, szðx; z; tÞ. The variation of these quantities
1

ical values of coefficients for water fully saturated poroelastic material

r modulus of solid G ¼ 108–0:2� 108 N/m2

modulus of water b ¼ 2:45� 109 N/m2

son�s ratio m ¼ 0:35

d density qs ¼ 1816 kg/m3

er density qf ¼ 1000 kg/m3

sity f ¼ 0:40

eability k ¼ 10�9–10�7 m3 s/kg¼ 10�5–10�3 m/s

fficient of material damping d ¼ 0:1
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with respect to the velocity c, permeability k, porosity f and shear modulus of solid G, according to the

approximate theory of Mei and Foda (1981) and consequently the accuracy of the present method against

the exact one, are evaluated in this section.

In what follows, the time t ¼ 0 corresponds to the instant at which the center of the applied load passes
the point with x ¼ 0 and z ¼ 0, at which the maximum value of any response function occurs. Furthermore,

it is clear that any response pattern underneath the load, at any time t, will appear to be the same for an

observer traveling with velocity c.
5.1. The boundary layer correction contribution

For the range of values of material properties and load velocities used in this work, the validity of the

basic assumptions of the theory of Mei and Foda (1981) as applied to the problem of this paper is

investigated firstly. Mention has already been made that the solution presented herein must satisfy the

expressions given by Eqs. (20) and (32). Table 2 shows the values of the quantities Rn¼1, dn¼1 and H=dn¼1 for

various combinations of permeability, shear modulus and load speed. It should be noted that, due to the

nature of Eqs. (20) and (32), for the harmonic with n ¼ 1 the quantities Rn¼1 and dn¼1 correspond to
minimum value of R and maximum layer depth dn, respectively, for the total number of harmonics. Thus,

one can observe that for low permeability, both expressions (20) and (32) give values well above unity,

whereas for high permeability both the Rn¼1 and the ratio H=dn¼1 are hardly greater than unity, especially

for high shear modulus and low load velocity. From Table 2, it is also evident, as expected (Mei and Foda,

1981), that the boundary layer thickness decreases with decreasing permeability, decreasing shear modulus

and increasing frequency (with knc being the frequency factor).

The effect of adding the contribution of the boundary layer correction to the outer approximation re-

sponse is shown in Figs. 2–4 for the vertical solid displacement, porewater pressure and solid vertical
effective stress, respectively. As mentioned in a previous section, any response of the outer approximation

solution is independent of the value of k. More specifically, Fig. 2(a) and (b) shows the vertical distribution

of both the outer approximation and total response of the maximum vertical displacement for two different

values of permeability k, G ¼ 108 N/m2 and a specific value of load velocity in each figure. One can see that

for both values of load velocity, the effect of boundary layer correction is a small percentage of the total

displacement response and increases with increasing permeability. Indeed, for k ¼ 10�9 m3 s/kg¼ 10�5 m/s

the outer approximation response is of about 94% of the total response at the free surface and in this case

the boundary layer correction can be neglected for engineering purposes. More details about this will be
given in the following section. It should be noted that the discrepancy between the outer approximation and

the total response over the whole soil layer depth is due to harmonic for n ¼ 0, for which dn¼0 ¼ H , as

mentioned in a previous section.

Fig. 3(a) and (b) shows the vertical variation of both the outer approximation and the total response

concerning the pore water pressure, again for two different values of permeability k, G ¼ 108 N/m2 and a
Table 2

Maximum value of boundary layer depth from Eq. (51) with n ¼ 1, for various combinations of k, c and G

G (N/m2) k ¼ 10�9 m3 s/kg¼ 10�5 m/s, f ¼ 0:40 k ¼ 10�7 m3 s/kg¼ 10�3 m/s, f ¼ 0:40

c ¼ 20 m/s c ¼ 100 m/s c ¼ 20 m/s c ¼ 100 m/s

Rn¼1 dn¼1 (m) H=dn¼1 Rn¼1 dn¼1 (m) H=dn¼1 Rn¼1 dn¼1 (m) H=dn¼1 Rn¼1 dn¼1 (m) H=dn¼1

108 400 1.148 16 1990 0.513 35 4.0 11.48 1.6 19.9 5.13 3.5

0.50· 108 790 0.825 22 3980 0.369 49 7.9 8.25 2.2 39.8 3.69 4.9

0.35· 108 1140 0.694 26 5670 0.310 58 11.4 6.94 2.6 56.7 3.10 5.8

0.20· 108 1980 0.528 34 9930 0.236 76 19.8 5.28 3.4 99.3 2.36 7.6
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Fig. 2. Effect of the boundary layer correction on maximum solid vertical displacement versus depth for c ¼ 20 m/s (a) and c ¼
100 m/s (b).
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Fig. 3. Effect of the boundary layer correction on the profile of the porewater pressure for c ¼ 20 m/s (a) and c ¼ 100 m/s (b).
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specific value of load velocity in each figure. It can be seen that, for both values of velocity c, in the case of

low permeability (k ¼ 10�9 m3 s/kg¼ 10�5 m/s) the total pore water pressure pð0; z; 0Þ increases rapidly with

depth near the free surface and then diminishes gradually up to a constant value. On the other hand, for

k ¼ 10�7 m3 s/kg¼ 10�3 m/s, which implies a boundary layer depth not small compared to the total layer
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depth H (see Table 2), the variation of the total pore water pressure is similar but with a lower maximum
value near the surface than in the previous case. This lower maximum value of the pore pressure near the

surface in the case of k ¼ 10�7 m3 s/kg¼ 10�3 m/s is due to the fact that for a more permeable poroelastic

soil the water is more free to squeeze in and out. It should be also mentioned here that the pore water

pressure distribution in Fig. 3(a) and (b) is similar to the one given in Foda and Mei (1983) for the case of

Rayleigh waves in a poroelastic half-space. As far as the distribution of the vertical effective stress sz is
concerned, one can see from Fig. 4(a) and (b) that the variation of szð0; z; 0Þ versus z for the same values of

the parameters as in Fig. 3(a) and (b), follows similar but opposite with respect to k patterns to those

observed for pð0; z; 0Þ, starting from 400 kN/m2 at the surface, since both the solid and fluid constituents
share the applied load at any depth.

Referring back to Fig. 3(a) and (b), it can be observed that, for fine materials (k ¼ 10�9 m3 s/kg¼ 10�5

m/s), the vertical pore water distributions given by the outer approximation solution and the total solution

are nearly the same in any respect except in the part near the free surface where the effect of the boundary

layer correction gives the expected distribution, that is, zero pore water pressure at the free surface (Eq.

(35b)). It is also of interest to note that the value of po at the surface, which has an absolute value equal to

the vertical effective stress component due to the boundary layer correction, sbz , approaches the value of the
applied stress F ¼ 400 kN/m2 (Fig. 3(a) and (b)), whereas the value of soz is very close to zero (Fig. 4(a) and
(b)). This is due to the high value of water compressibility b ¼ 2:45� 109 N/m2 used here as compared to

the shear modulus G ¼ 108 N/m2 (G=b ¼ 0:041), which affects the values of the coefficients of Eqs. (47) and

(46) for P o
n and T o

z;n, respectively. For a rather compressible fluid with b ¼ 108 N/m2 (G=b ¼ 1:0), the sharing
of the applied load between soz and sbz (¼ �po) changes, thus, reducing the values of po at the surface to 176

and 183 kN/m2 for c ¼ 20 and 100 m/s, respectively.

5.2. Comparison between approximate method and exact solution

Fig. 5(a)–(c) shows the variation with depth of the vertical displacement, porewater pressure and solid
vertical effective stress, respectively, according to both the present approximate method and the exact
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Fig. 5. Comparison of the maximum vertical displacement (a), porewater pressure (b) and vertical effective stress (c) between the

present approximate method and exact solution (k ¼ 10�9 m3 s/kg ¼ 10�5 m/s, G ¼ 108 N/m2).
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solution of Theodorakopoulos (2003), for G ¼ 108 N/m2, k ¼ 10�9 m3 s/kg¼ 10�5 m/s and for two values of
load velocity c (20, 100 m/s) in each figure. It can be seen that the agreement between the two solutions is

very satisfactory for all three response functions. These conclusions are the consequence of the fact that in

the case of a fine material (k ¼ 10�9 m3 s/kg¼ 10�5 m/s) the values of Rn¼1 and H=dn¼1 are much larger than

unity, as required by the theory of Mei and Foda (1981). Furthermore, it is observed from Fig. 5(a)–(c),

that for c ¼ 100 m/s, the agreement between the two solutions has been even more satisfactory due to even

more larger values of the quantities Rn¼1 and H=dn¼1 computed in such a case.



1816 D.D. Theodorakopoulos et al. / International Journal of Solids and Structures 41 (2004) 1801–1822
The comparison of the response of the soil medium under moving loads between the present approxi-

mate method and the exact solution for the case of a coarse material (k ¼ 10�7 m3 s/kg¼ 10�3 m/s), is shown

in Fig. 6(a)–(c), again for two values of load velocity c (20, 100 m/s) in each figure. One can see that the

agreement between the two solutions, as far as the vertical displacement is concerned, Fig. 6(a), is yet
excellent, although for the coarse material the depth of the boundary layer dn¼1 is not small compared to the

layer depth H (Table 2). Moreover, the same conclusion can be drawn for the case of a softer material, as
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Fig. 6. Comparison of the maximum vertical displacement (a), porewater pressure (b) and vertical effective stress (c) between the

present approximate method and exact solution (k ¼ 10�7 m3 s/kg ¼ 10�3 m/s, G ¼ 108 N/m2).
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shown in Fig. 7, where the vertical displacement is plotted versus depth for two values of permeability,

c ¼ 20 m/s and G ¼ 0:2� 108 N/m2.

However, referring back to Fig. 6(b) and (c), it can be observed that, for a coarse material, there is a

discrepancy in both the porewater pressure and the vertical solid effective stress between the two solutions.
More specifically, the use of the present approximate method overestimates the porewater pressure and, as

an expectation, underestimates the vertical solid effective stress. These discrepancies for the case of k ¼ 10�7

m3 s/kg¼ 10�3 m/s can be attributed to the large depth of the boundary layer, which seems to affect the

distribution of the applied load between solid and fluid more than it affects the overall response of the

vertical displacement when the present method is used. It should be reminded that the value of the ratio

H=dn¼1 increases proportionally to the square root of c, and this explains the smaller discrepancies in p and

sz between the two solutions when the load velocity increases from c ¼ 20 to 100 m/s, respectively, as shown

in Fig. 6(b) and (c).
Bearing in mind the above results and having a closer inspection of Figs. 3(a)–(b) and 4(a)–(b), one can

conclude that a satisfactory agreement between the two solutions, is expected, as far as the porewater

pressure and the vertical solid effective stress are concerned, if and only if the total response of the medium

is governed by the outer approximation solution of the present method, and this occurs in the case of a fine

material.

As mentioned before, there exists an excellent agreement of the displacement response between the

present approximate method and the exact solution of Theodorakopoulos (2003) for both fine and coarse

materials and for any range of load speed within the limits used in practice, (c ¼ 100 m/s¼ 360 km/h). This
is also demonstrated in Table 3, where the maximum surface displacement values are calculated for various

values of the poroelastic material properties and velocity c. It can be seen that for a hard solid material,

G ¼ 108 N/m2, the agreement between the two solutions is yet excellent even for more permeable material,

k ¼ 10�6 m3 s/kg¼ 10�2 m/s, for which dn¼1 > H . It is of interest to note that the largest value of load speed

considered in these calculations, c ¼ 100 m/s, has been a rather small percentage of the shear wave velocity

ms ¼
ffiffiffiffiffiffiffiffiffiffi
G=qs

p
¼ 234:66 m/s. Also, in the case of G ¼ 108 N/m2, the effect of porosity is negligible when the
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Table 3

Comparison of the maximum vertical surface displacement between the present approximate method and the exact solution for various

values of permeability, porosity, shear modulus and load velocity

c c=Us, % Exact solution Present solution

f ¼ 0:20 f ¼ 0:40 f ¼ 0:20 f ¼ 0:40

w w wo w wo w

G ¼ 108 ms ¼ 234:66 m/s (845 km/h)

k ¼ 10�9 m3 s/kg¼ 10�5 m/s 20 9 6.1 6.2 5.7 6.1 5.7 6.2

65 28 6.2 6.3 5.9 6.3 5.9 6.3

80 34 6.4 6.5 6.0 6.4 6.1 6.4

100 43 6.7 6.6 6.3 6.6 6.3 6.6

k ¼ 10�7 m3 s/kg¼ 10�3 m/s 20 9 7.5 7.5 5.7 7.1 5.7 7.2

65 28 7.1 7.1 5.9 6.9 5.9 6.9

80 34 7.2 7.2 6.0 6.9 6.1 6.9

100 43 7.4 7.2 6.3 7.1 6.3 7.1

k ¼ 10�6 m3 s/kg¼ 10�2 m/s 20 9 8.7 8.7 5.7 8.7 5.7 8.6

65 28 8.6 8.5 5.9 8.3 5.9 8.2

80 34 8.6 8.6 6.0 8.2 6.1 8.2

100 43 8.7 8.4 6.3 8.3 6.3 8.2

G ¼ 0:35� 108 ms ¼ 138:83 m/s (500 km/h)

k ¼ 10�9 m3 s/kg¼ 10�5 m/s 20 14 17.3 17.4 16.1 17.2 16.2 17.3

65 47 19.0 19.1 18.2 19.2 18.0 19.0

80 58 20.0 18.9 19.7 20.7 19.3 20.3

100 72 22.7 22.2 23.2 24.2 22.2 23.2

k ¼ 10�7 m3 s/kg¼ 10�3 m/s 20 14 19.9 19.9 16.1 19.1 16.2 19.1

65 47 20.8 20.6 18.2 20.2 18.0 20.1

80 58 21.9 21.8 19.7 21.7 19.3 21.3

100 72 23.2 21.6 23.2 25.1 22.2 24.1

k ¼ 10�6 m3 s/kg¼ 10�2 m/s 20 14 24.1 24.1 16.1 23.5 16.2 23.4

65 47 23.5 23.0 18.2 22.8 18.0 22.5

80 58 24.3 24.3 19.7 24.0 19.3 23.5

100 72 26.3 24.0 23.2 27.4 22.2 26.2

G ¼ 0:20� 108 ms ¼ 104:94 m/s (378 km/h)

k ¼ 10�9 m3 s/kg¼ 10�5 m/s 20 19 30.4 30.4 28.4 30.3 28.5 30.3

65 62 36.5 36.4 35.8 37.6 34.8 34.8

80 76 41.6 41.3 43.3 45.0 40.8 42.5

100 95 53.9 46.3 70.6 72.4 61.3 63.1

k ¼ 10�7 m3 s/kg¼ 10�3 m/s 20 19 33.8 33.8 28.4 32.7 28.5 32.7

65 62 37.5 35.9 35.8 39.0 34.8 38.0

80 76 41.6 40.3 43.3 46.4 40.8 43.9

100 95 71.1 59.5 70.6 74.2 61.3 64.7

k ¼ 10�6 m3 s/kg¼ 10�2 m/s 20 19 40.6 40.5 28.4 38.6 28.5 38.5

65 62 44.2 44.0 35.8 42.5 34.8 41.5

80 76 53.0 48.8 43.3 49.9 40.8 47.2

100 95 96.4 71.7 70.6 78.6 61.3 68.6
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present method is used, in agreement with the case of the exact solution (Theodorakopoulos, 2003). Similar
conclusions can be drawn for the case of G ¼ 0:35� 108 N/m2 as far as the agreement of the values of the



D.D. Theodorakopoulos et al. / International Journal of Solids and Structures 41 (2004) 1801–1822 1819
maximum surface displacement obtained by the two solutions is concerned. However, in an even softer

medium with G ¼ 0:2� 108 N/m2, the effect of increasing values of permeability and porosity on the above

mentioned agreement is apparent, especially in the range of high speeds, for reasons explained in

Theodorakopoulos (2003).
The relationship of the surface vertical displacement responses for the outer approximation and the total

field solutions of the present method is also of practical value. From the computed values of wo and w in

Table 2 the following are noted:

• For any soil medium, increasing wo=w ratios are found with increasing values of load velocity.

• For a soil medium with a given value of G, the wo=w ratio decreases with increasing permeability, since

the value wo is constant, i.e., independent of the value of k. Similarly, for a given permeability, the wo=w
ratio increases with decreasing value of G.

• The effect of porosity on the value of wo is only apparent in the case of soft materials with high perme-

ability, especially in the range of high load speeds.

• For a fine soil medium (k ¼ 10�9 m3 s/kg¼ 10�5 m/s) and low values of c, the ratio wo=w is of about 94%,

whereas for a coarse material (k ¼ 10�7 m3 s/kg¼ 10�3 m/s) the corresponding wo=w ratio decreases to

about 80%.

Thus, as mentioned before, it can be concluded, that for a fine material and for the whole range of the load

speeds, the displacement response of the soil layer can be found by only using the outer approximation
solution.

The comparison between the two solution procedures for the porewater pressure at 2.0 m depth and at a

horizontal distance x ¼ 160 m from the origin is shown in Fig. 8(a) and (b) for two values of permeability

and a specific value of load velocity in each figure. One can see that, for a high value of permeability and for

both values of load velocity, the agreement between the two solutions is very satisfactory, as expected. In
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Fig. 8. Comparison of the porewater pressure at 2.0 m depth between the present approximate method and exact solution for various

values of k and c ¼ 20 m/s (a) and c ¼ 100 m/s (b).
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addition, the maximum fluid pressure for both solutions occurs at t ¼ 8 and 1.6 s, which are the traveling

times of the moving load up to the plane of observation, AA (Fig. 1), for c ¼ 20 and 100 m/s, respectively.

However, for a more permeable material (k ¼ 10�7 m3 s/kg¼ 10�3 m/s) and at low speeds, Fig. 8(a), two

differences in porewater pressure response can be observed. The first one has to do with the magnitude of
peak response, being larger when the present approximate method is used, and the second one pertains to

the time at which these peaks occur. One can see that, in the exact solution, the maximum fluid pressure

occurs at a little bit earlier time than that of t ¼ 8 s (t ¼ 160 m/20 m/s) for reasons explained in Theodo-

rakopoulos (2003). As far as the negative profile of the porewater pressure as the load moves away from the

point of interest is concerned, the two solutions exhibit similar response for k ¼ 10�7 m3 s/kg¼ 10�3 m/s.

This porewater pressure behavior is consistent with earlier theoretical analysis (Siddharthan et al., 1993;

Burke and Kingsbury, 1984). However, this consistency between the two solutions in the negative values of

pressure is not longer true for c ¼ 100 m/s, as shown in Fig. 8(b).
Based on the above stated differences in the porewater pressure responses as computed by both the

present approximate method and the exact solution, and bearing in mind the corresponding comparisons in

Theodorakopoulos (2003) between the exact solution and the method proposed by Siddharthan et al.

(1993), it can be said that for a fine material the response behavior between the pressure of approximate

solution and that of Siddharthan et al. (1993) is similar. This is due to the fact that, in such a case, the

response of the present approximate method is governed by the outer approximation solution and, hence,

both solution procedures are based on the same assumption, that is, of no relative motion between solid

and fluid constituents.
Fig. 9 shows the solid vertical effective stress at 2.0 m depth below the point of interest at x ¼ 160 m for

k ¼ 10�9 m3 s/kg¼ 10�5 m/s and c ¼ 20 m/s. It can be seen that the agreement in the responses between the

present method and the exact solution is excellent as the load approaches and moves away from the plane

of observation (Fig. 1).
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6. Conclusions

On the basis of the preceding developments, the following conclusions can be drawn:

1. The problem of the dynamic response of a fully saturated poroelastic soil layer on bedrock subjected to a

moving strip load on its surface was solved analytically in an approximate way under conditions of plane

strain.

2. The method of solution was based on the theory of Mei and Foda. The solid vertical displacement, pore-

water pressure and solid vertical effective stress were explicitly expressed as the sum of the outer approx-

imation problem and the boundary layer correction. Their variation with the various parameters of the

problem such as shear modulus, permeability, porosity and load velocity was numerically computed.

3. In the case of a soil medium with low permeability (k ¼ 10�5 m/s), the vertical displacement response
found by the outer approximation solution is of about 95% of the total response and, hence, the bound-

ary layer correction can be neglected for engineering purposes.

4. Similarly, for a soil material with low permeability, the effect of the boundary layer correction on the

porewater and solid vertical effective stress responses is negligible, except near the free surface where

the boundary layer correction gives the expected distributions due to the boundary conditions.

5. However, for a more permeable material (k ¼ 10�3 m/s), the effect of the boundary layer correction on

the response was found to be significant, especially in the cases of porewater pressure and vertical effec-

tive stress.
6. The accuracy of the present approximate method has been demonstrated by comparing its predictions

with those obtained by the exact solution. The numerical data that have been presented provide a frame-

work for the range of the material properties for which the present method can be used. Thus,

(i) For a fine material and almost independently of the value of the shear modulus of the soil medium,

the agreement between the present method and the exact solution for any response function is very

satisfactory.

(ii) For a coarse material, the accuracy of the present method in relation to the vertical displacement is

very satisfactory but there exist discrepancies in relation to porewater pressure and solid vertical
effective stress responses between the present and exact solutions.

(iii) The accuracy of the present method compared with the exact solution becomes more pronounced

with increasing load velocity for any range of the values of material properties, except in the case

of a soft material at high speeds.

7. The approximate method presented herein provides an alternative method of analysis of a poroelastic

soil medium under moving loads characterized by simplicity, less computational effort and high accu-

racy, especially in the case of fine materials.
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